首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14280篇
  免费   3349篇
  国内免费   4247篇
测绘学   1548篇
大气科学   5312篇
地球物理   2893篇
地质学   5358篇
海洋学   2546篇
天文学   420篇
综合类   1185篇
自然地理   2614篇
  2024年   44篇
  2023年   203篇
  2022年   518篇
  2021年   614篇
  2020年   678篇
  2019年   739篇
  2018年   658篇
  2017年   751篇
  2016年   743篇
  2015年   844篇
  2014年   1090篇
  2013年   1198篇
  2012年   1070篇
  2011年   1106篇
  2010年   895篇
  2009年   1132篇
  2008年   1035篇
  2007年   1187篇
  2006年   985篇
  2005年   891篇
  2004年   753篇
  2003年   629篇
  2002年   592篇
  2001年   500篇
  2000年   433篇
  1999年   426篇
  1998年   367篇
  1997年   295篇
  1996年   249篇
  1995年   226篇
  1994年   203篇
  1993年   206篇
  1992年   145篇
  1991年   102篇
  1990年   90篇
  1989年   67篇
  1988年   59篇
  1987年   33篇
  1986年   23篇
  1985年   24篇
  1984年   15篇
  1983年   10篇
  1982年   11篇
  1981年   8篇
  1980年   6篇
  1979年   8篇
  1978年   5篇
  1977年   2篇
  1976年   3篇
  1954年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
本文采用中国沿海地区13个探空站2010~2014年实测地表温度Ts与平均温度Tm数据,利用傅里叶级数分析法精化中国沿海地区Tm模型,并将2015年探空站实测Tm数据与精化模型进行对比检验。结果表明,精化模型在Tm探测方面具有更高的计算精度,其计算大气可降水量的误差概率分布趋近于正态分布,具有较强的稳定性。  相似文献   
22.
盆地热体制及深部温度估算对油气和区域地热能资源评估具有重要意义。南方上扬子区是海相油气勘探的重要区块,近年来更是我国页岩气勘探的主要选区。然而,由于数据不足及研究目标的分散,该区的盆地热体制特征还有待深化。结合前人已有地热数据,并整合新近开展的稳态测温数据,我们揭示了上扬子区现今地温梯度、大地热流分布特征,继而估算了1000~6000m埋深处的深部地层温度和2套主要古生界海相烃源岩底界面处的温度。结果表明,上扬子区具有中-低温的地热状态,其现今地温梯度和大地热流的范围(平均值)分别为10~74℃/km(24℃/km)和27~118mW/m~2(64mW/m~2),整体上从东北向西南方向递增,呈现出"东北低、西南高"的分布趋势。1000~6000m埋深处估算温度的分布格局与地温梯度及热流的分布趋势基本一致。东北部的鄂西-湘北地区为低温区,中部的四川盆地其大部分为中温区,西南的云南地区为高温区。上扬子区现今地热分布格局受区域差异构造和岩浆作用控制。结合储层温度估算并综合其他油气地质资料,提出川东的石柱-涪陵、川南的威远-自贡-泸州和宜宾-长宁等区的下志留统龙马溪组页岩层系是上扬子区油气勘探有利区带。  相似文献   
23.
The hydrodynamic forces on the stationary partially submerged cylinder are investigated through towing test with Reynolds number ranging from 5 × 104 to 9 × 105. Three test groups of partially submerged cylinders with submerged depths of 0.25 D, 0.50 D, and 0.75 D and one validation group of fully submerged cylinders are conducted. During the experiments, the hydrodynamic forces on the cylinders are measured using force sensors. The test results show a considerable difference in the hydrodynamic coefficients for the partially submerged cylinders versus the fully submerged cylinders. A significant mean downward lift force is first observed for the partially submerged cylinders in a steady flow. The maximum of the mean lift coefficients can reach 1.5. Two distinct features are observed due to the effects of overtopping: random distributions in the mean drag coefficients and a clear quadratic relationship between the mean lift coefficients and the Froude number appear in the non-overtopping region. However, the novel phenomenon of a good linear relationship with the Froude number for the mean hydrodynamic coefficients is clearly shown in the overtopping region. In addition, fluctuating hydrodynamic coefficients are further proposed and investigated. These results are helpful to have a better understanding of the problem and to improve related structural designs.  相似文献   
24.
Stable water isotopes δ18O and δ2H are used to investigate precipitation trends and storm dynamics to advance knowledge of precipitation patterns in a warming world. Herein, δ18O and δ2H were used to determine the relationship between extratropical cyclonic precipitation and local meteoric water lines (LMWLs) in the eastern Ohio Valley and the eastern United States. Precipitation volume weighted and unweighted central Ohio LMWLs, created with samples collected during 2012–2018, showed that temperature had the greatest effect on precipitation isotopic composition. HYSPLIT back trajectory modelling showed that precipitation was primarily derived from a mid-continental moisture source. Remnants of major hurricanes were collected as extratropical precipitation during the 2012–2018 sampling period in central Ohio. Extratropical precipitation samples were not significantly different from the samples that created the central Ohio LMWL. Six additional LMWLs were derived from United States Geological Survey (USGS) Atmospheric Integrated Research Monitoring Network (AIRMoN) samples collected in Pennsylvania, Delaware, Tennessee, Vermont, New Hampshire, and Oxford, Ohio. Meteoric water lines describing published samples from Superstorm Sandy, plotted with these AIRMoN LMWLs, showed isotopic composition of Superstorm Sandy precipitation was commonly more depleted than the average isotopic composition at the mid-latitude locations. Meteoric water lines describing the Superstorm Sandy precipitation were not significantly different in slope from LMWLs generated within 300 km of the USGS AIRMoN site. This finding, which was observed across the eastern Ohio Valley and eastern United States, demonstrated a consistent precipitation δ2H–δ18O relationship for extratropical cyclonic and non-cyclonic events. This work also facilitates the analysis of storm development based on the relationship between extratropical event signature and the LMWL. Analysis of extratropical precipitation in relation to LMWLs along storm tracks allows for stronger development of precipitation models and understanding of which climatic and atmospheric factors determine the isotopic composition of precipitation.  相似文献   
25.
目前,对于大庆地区的地质构造研究成果仅局限在深部构造上,该地区从未开展过针对近地表隐伏断裂的探查工作.本文采用浅层反射地震勘探方法,查明了克山—大安断裂嫩江组以上地层的详细地层信息以及断裂的展布形态;同时,在主干断裂上覆的背斜构造中,发现了许多次级断裂,这些次级断裂在前人的成果中并未提出过,并且在本区的断裂-褶皱构造体系中,次级断裂的活动特性同样受主干断裂活动的影响;然后通过钻孔验证,证实了浅层反射地震勘探结果的可靠性,并且确定了次级断裂的最新活动时代;最后综合编制了松辽盆地长垣隆起地区浅层地质模型,并讨论了本地区的构造体系受晚白垩纪以来太平洋板块俯冲方向变化的影响而形成的构造特征.本次研究中的方法和成果可为大庆市城市发展规划、重大工程建设选址和大庆油田安全高效生产等提供科学依据,可为其他地区开展近地表断裂探查提供借鉴和参考,为本地区浅层地质构造后续研究提供了基础资料,填补该地区近地表地球物理勘探构造研究的空白.  相似文献   
26.
The study is based on the underground fluid observation data in Lijiang area, northwest Yunnan Province. The data include the water level and temperature in Dangxiao well and Jinjia well, and the ion measurements in Ganze spring. Combining with the data of regional hydrogeology, rainfall, well structures, and the geothermal gradient, we analyzed the variations of each measurement item before the Ludian MS6.5 earthquake on August 3, 2014 and discussed the possible mechanism for the abnormal variations. The water levels of both Dangxiao well and Jinjia well are influenced by local rainfall, but the former shows hysteresis according to rainy seasons and is the long trend influence; while the latter shows synchronization between high water level and rainy season, indicating good connection between well water and shallow aquifer. The recharge water for Dangxiao well is in relatively low temperature, and the temperature sensor is located at the major connecting section between the well water and the aquifer; the water temperature variation is mainly affected by the discharge status and variation of water level. The Jinjia well is always in static level, and the temperature sensor is below the major connecting section between the well water and aquifer, so the water temperature is affected little by water level variations and in smooth fluctuation. The recharge source for Ganze spring can generally increase the contents of calcium and magnesium ions, so does the conductivity. The water level data of Dangxiao well since 2012 are decomposed with wavelet technique. The results, excluding such high-frequency components as the noise and the semidiurnal and daily wave components influenced by earth tide, are further processed with difference method in order to eliminate the trend effect. The results show that the relative change of water level is enhanced and in relatively rapid increase before the Ludian MS6.5 earthquake; the corresponding water temperature values are high. The tendency of water level in Jinjia well displays descending, while the corresponding water temperature shows ascending. The content of calcium ion, magnesium ion, bicarbonate ion, and conductivity of Ganze spring are descending, while the content of fluoride ion is ascending. The abnormal variations of underground fluid in Lijiang area appeared in turns and were accompanied with minor earthquakes before Ludian MS6.5 earthquake, which indicates enhancing of regional stress and increasing of fluid activity.  相似文献   
27.
The transition area between rivers and their adjacent riparian aquifers, which may comprise the hyporheic zone, hosts important biochemical reactions, which control water quality. The rates of these reactions and metabolic processes are temperature dependent. Yet the thermal dynamics of riparian aquifers, especially during flooding and dynamic groundwater flow conditions, has seldom been studied. Thus, we investigated heat transport in riparian aquifers during 3 flood events of different magnitudes at 2 sites along the same river. River and riparian aquifer temperature and water‐level data along the Lower Colorado River in Central Texas, USA, were monitored across 2‐dimensional vertical sections perpendicular to the bank. At the downstream site, preflood temperature penetration distance into the bank suggested that advective heat transport from lateral hyporheic exchange of river water into the riparian aquifer was occurring during relatively steady low‐flow river conditions. Although a small (20‐cm stage increase) dam‐controlled flood pulse had no observable influence on groundwater temperature, larger floods (40‐cm and >3‐m stage increases) caused lateral movement of distinct heat plumes away from the river during flood stage, which then retreated back towards the river after flood recession. These plumes result from advective heat transport caused by flood waters being forced into the riparian aquifer. These flood‐induced temperature responses were controlled by the size of the flood, river water temperature during the flood, and local factors at the study sites, such as topography and local ambient water table configuration. For the intermediate and large floods, the thermal disturbance in the riparian aquifer lasted days after flood waters receded. Large floods therefore have impacts on the temperature regime of riparian aquifers lasting long beyond the flood's timescale. These persistent thermal disturbances may have a significant impact on biochemical reaction rates, nutrient cycling, and ecological niches in the river corridor.  相似文献   
28.
Many researchers have studied the influence of rainfall patterns on soil water movement processes using rainfall simulation experiments. However, less attention has been paid to the influence under natural condition. In this paper, rainfall, soil water content (SWC), and soil temperature at 10‐, 20‐, 30‐, 40‐, and 50‐cm depths were simultaneously monitored at 1‐min intervals to measure the variation in SWC (SWCv) in response to rainfall under different rainfall patterns. First, we classified rainfall events into four patterns. During the study period, the main pattern was the advanced rainfall pattern (38% of all rainfall events), whereas the delayed, central, and uniform rainfall patterns had similar frequencies of about 20%. During natural rainfall, rainwater rapidly passed through the top soil layers (10–40 cm) and was accumulated in the bottom layer (50 cm). When a high rainfall pulse occurred, the water storage balance was disturbed, resulting in the drainage of initial soil water from the top layers into the deeper layers. Therefore, the critical function of the top layers and the bottom layers was infiltration and storage, respectively. The source of water stored in the bottom layer was not only rainfall but also the initial soil water in the upper soil layers. Changes in soil temperature at each soil depth were comonitored with SWCv to determine the movement characteristics of soil water under different rainfall patterns. Under the delayed rainfall pattern, preferential flows preferred to occur. Under the other rainfall patterns, matrix flow was the main form of soil water movement. Rainfall amount was a better indicator than rainfall intensity for SWCv in the bottom layer under the delayed rainfall pattern. These results provide insights into the responses of SWCv under different rainfall patterns in northern China.  相似文献   
29.
30.
基于ROMS和4DVAR的沿轨与网格化SSH数据同化效果评价   总被引:1,自引:1,他引:0  
Remote sensing products are significant in the data assimilation of an ocean model. Considering the resolution and space coverage of different remote sensing data, two types of sea surface height(SSH) product are employed in the assimilation, including the gridded products from AVISO and the original along-track observations used in the generation. To explore their impact on the assimilation results, an experiment focus on the South China Sea(SCS) is conducted based on the Regional Ocean Modeling System(ROMS) and the four-dimensional variational data assimilation(4 DVAR) technology. The comparison with EN4 data set and Argo profile indicates that, the along-track SSH assimilation result presents to be more accurate than the gridded SSH assimilation, because some noises may have been introduced in the merging process. Moreover, the mesoscale eddy detection capability of the assimilation results is analyzed by a vector geometry–based algorithm. It is verified that, the assimilation of the gridded SSH shows superiority in describing the eddy's characteristics, since the complete structure of the ocean surface has been reconstructed by the original data merging.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号